Reinventing the clock: NASA's new tech for space timekeeping

Here on Earth, it might not matter if your wristwatch runs a few seconds slow. But crucial spacecraft functions need accuracy down to one billionth of a second or less. Navigating with GPS, for example, relies on precise ...

NASA to develop lunar time standard for exploration initiatives

NASA will coordinate with U.S. government stakeholders, partners, and international standards organizations to establish a Coordinated Lunar Time (LTC) following a policy directive from the White House in April. The agency's ...

page 1 from 28

Atomic clock

An atomic clock is a type of clock that uses an atomic resonance frequency standard as its timekeeping element. They are the most accurate time and frequency standards known, and are used as primary standards for international time distribution services, and to control the frequency of television broadcasts and GPS satellite signals.

Atomic clocks do not use radioactivity, but rather the precise microwave signal that electrons in atoms emit when they change energy levels. Early atomic clocks were masers with attached equipment. Currently the most accurate atomic clocks are based on absorption spectroscopy of cold atoms in atomic fountains such as the NIST-F1.

National standards agencies maintain an accuracy of 10-9 seconds per day (approximately 1 part in 1014), and a precision set by the radio transmitter pumping the maser. The clocks maintain a continuous and stable time scale, International Atomic Time (TAI). For civil time, another time scale is disseminated, Coordinated Universal Time (UTC). UTC is derived from TAI, but synchronized, by using leap seconds, to UT1, which is based on actual rotations of the earth with respect to the mean sun.

This text uses material from Wikipedia, licensed under CC BY-SA